Five New Xanthenone O-Glycosides from the Roots of Polygala sibirica L.

by Yu-Hong Zhou^a), Yong Jiang^a), Hai-Ming Shi^b), Yu-Ping Chen^a), and Peng-Fei Tu^{*a})

^a) Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100083, P. R. China (phone: +86-10-82802750; fax: +86-10-82802750; e-mail: pengfeitu@vip.163.com)

^b) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Five new xanthenone *O*-glycosides, sibiricaxanthone C (1), sibiricaxanthone D (2), sibiricaxanthone E (3), sibiricaxanthone F (4), and sibiricaxanthone G (5) were isolated from the roots of *Polygala* sibirica L., together with the six known xanthenone glycosides 6-11. The structures of new compounds were elucidated on the basis of spectral data and acid hydrolysis.

Introduction. - In continuation of our search for new bioactive compounds in *Polygalaceae* species [1-7], we have now investigated the chemical constituents of the roots of Polygala sibirica L., one of the authorized sources of 'Yuan Zhi' in the Chinese Pharmacopoeia. 'Yuan Zhi' is a commonly used traditional Chinese medicine (TCM), which acts as a tonic, sedative, and expectorant agent. Up to now, there is only one paper reporting the isolation of several sucrose esters and xanthenone C-glycosides from *P. sibirica* [8]. In this paper, we describe the isolation and structure elucidation of the five new xanthenone O-glycosides sibiricaxanthones C-G (1-5) from Polygala sibirica L., which were accompanied by six known xanthone glycosides. The known compounds were identified by extensive NMR analyses as polygalaxanthone VI (=6- $(\beta$ -D-glucopyranosyloxy)-1,2,3,7-tetramethoxy-9*H*-xanthen-9-one) [1], 7-*O*-methyl- $(=2-\beta$ -D-glucopyranosyl-1,3,6-tetrahydroxy-7-methoxy-9*H*-xanthen-9mangiferin one) [7], polygalaxanthone III (=2-(6-O-D-apio- β -D-furanosyl- β -D-glucopyranosyl)-1,3,6-trihydroxy-7-methoxy-9*H*-xanthen-9-one) [8], sibiricaxanthone B (=2-(2-O-D-D-D)) apio-\beta-D-furanosyl-\beta-D-glucopyranosyl)-1,3,7-trihydroxy-9H-xanthen-9-one) [8], mangiferin (=2- β -D-glucopyranosyl-1,3,6,7-tetrahydroxy-9*H*-xanthen-9-one) [9], and 4- β -D-glucopyranosyl-1,3,6-trihydroxy-7-methoxy-9H-xanthen-9-one [10].

Results and Discussion. – Compound **1** was obtained as a pale yellow powder, and its molecular formula was deduced to be $C_{21}H_{22}O_{11}$ from the HR-ESI-MS (m/z451.1239 ($[M + H]^+$)). Its UV spectrum in MeOH (λ_{max} 235, 243, 260, 320, and 362 nm) showed the characteristic absorption of a 9*H*-xanthen-9-one. The IR spectrum of **1** showed the presence of OH groups (3419 cm⁻¹), a H-bonded C=O group (1651 cm⁻¹), and aromatic rings (1614, 1589, and 1485 cm⁻¹). Acid hydrolysis of **1** yielded Lrhamnose, which was identifiedd by TLC and GC analysis. The ¹H- and ¹³C-NMR (*Table 1*) and HMBC data established the structure of **1** as 1,3-dihydroxy-2,7-

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

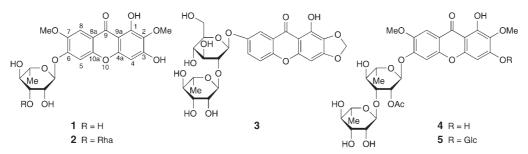


Table 1. ¹*H*- and ¹³*C*-*NMR Data* (500 and 125 MHz, resp., (D_6)DMSO) of Compounds 1, 2, and 3. δ in ppm, *J* in Hz.

	1				3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1)		153.8		153.8		153.0
C(2)		130.6		130.6		128.9
C(3)		158.3		158.3		155.2
H-C(4)	6.49(s)	93.9	6.50(s)	93.9	6.85(s)	89.6
C(4a)		152.5		152.5		153.2
H-C(5)	7.27(s)	103.5	7.29(s)	103.9	7.63 (d, J = 9.5)	119.3
C(6) or $H-C(6)$		151.7		151.8	7.49 (dd, J = 3, 9.5)	124.9
C(7)		146.9		147.0		153.4
H-C(8)	7.48(s)	104.6	7.50(s)	105.0	7.65 $(d, J = 3.0)$	109.2
C(8a)		112.9		113.1		119.8
C(9)		179.2		179.2		180.3
C(9a)		101.9		102.2		104.4
C(10a)		151.1		151.1		150.7
MeO-C(2)	3.76(s)	60.0	3.79(s)	60.0		
MeO-C(7)	3.90(s)	56.0	3.97(s)	56.2		
OH-C(1)	13.05(s)		13.04 (s)		12.63 (s)	
OH-C(3)	10.88 (br. s)		10.87 (br. s)			
OCH ₂ O					6.18(s)	103.0
Rha or Glc:	Rha		Rha-1		Glc	
H-C(1)	5.62 (br. s)	99.0	5.58 (d, J = 1.5)	99.3	5.16 (d, J = 7.0)	98.5
H-C(2)	3.46 - 3.48 (m)	70.1	3.45 - 3.46 (m)	70.4	3.31 (overlapped)	76.6
H-C(3)	3.71 - 3.72 (m)	70.2	3.81 - 3.82 (m)	76.5	3.51 - 3.52 (m)	76.9
H-C(4)	3.33 - 3.36(m)	71.4	3.78 - 3.79(m)	70.7	3.22 - 3.24(m)	69.6
H-C(5)	3.89 (overlapped)	69.9	3.97 (overlapped)	69.4	3.41 - 3.43 (m)	77.1
$Me(6)$ or $CH_2(6)$	1.14 (d, J = 6.0)	17.8	1.14 (d, J = 6.0)	17.7	3.68 - 3.70(m),	60.4
					3.30 - 3.31(m)	
Rha:			Rha-2		Rha	
H-C(1)			4.91 (d, J = 1.5)	102.0	5.12 (br. s)	100.6
H-C(2)			3.47-3.48 (m)	70.4	3.29 - 3.30(m)	70.4
H-C(3)			3.56-3.57 (m)	70.4	3.70 - 3.72(m)	70.5
H-C(4)			3.23 - 3.25(m)	72.0	3.18 - 3.19(m)	71.8
H-C(5)			3.70 - 3.71(m)	68.5	3.80 - 3.81 (m)	68.3
Me(6)			1.13 (d, J = 6.0)	18.0	1.19(d, J = 6.0)	18.0

dimethoxy-6-(α -L-rhamnopyranosyloxy)-9*H*-xanthen-9-one which was named sibiricaxanthone C.

The ¹H-NMR spectrum of **1** displayed three uncoupled aromatic H-atoms at δ 6.49, 7.27, and 7.48, a H-bonded OH group at δ 13.05 (*s*), a free phenolic OH group at δ 10.88 (br. *s*), two MeO groups at δ 3.90 (*s*) and 3.76 (*s*), and an anomeric H-atom at δ 5.62 (br. *s*). From the characteristic UV, IR, and NMR data, **1** was deduced as a 9*H*-xanthen-9-one glycoside with a disubstituted and a trisubstituted benzo moiety. The anomeric configuration of the L-rhamnosyl residue was determined to be α from the ¹³C-NMR chemical shifts of its C(3) (δ 70.2) and C(5) (δ 69.9) [11][12]. In the HMBC plot (*Figure*), the rhamnose anomeric H-atom at δ 5.62 was correlated with C(6) at δ 151.7, the MeO group at δ 3.90 with C(7) at δ 146.9, and another MeO group at δ 3.76 with C(2) at δ 130.6.

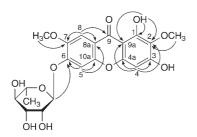


Figure. Key HMBC correlations $(H \rightarrow C)$ of compound 1

Compound **2** was isolated as a yellow powder with a molecular formula $C_{27}H_{32}O_{15}$, as deduced from the HR-ESI-MS (m/z 597.1801 ($[M + H]^+$)). Acid hydrolysis of **2** yielded L-rhamnose. The ¹H- and ¹³C-NMR data of **2** (*Table 1*) were similar to those of **1**, except for the signals of an additional L-rhamnose in **2**. On the basis of further data, **2** was characterized as 1,3-dihydroxy-2,7-dimethoxy-6-{[α -L-rhamnopyranosyl-($1 \rightarrow 3$)- α -L-rhamnopyranosyl]oxy}-9H-xanthen-9-one which was named sibiricaxanthone D.

The ¹H-NMR spectrum of **2** showed three uncoupled aromatic H-atoms at δ 6.50, 7.29, and 7.50, two phenolic OH groups at δ 13.04 (*s*) and 10.87 (br. *s*), two MeO groups at δ 3.79 (*s*) and 3.97 (*s*), and two anomeric H-atoms at δ 5.58 (*d*, J = 1.5 Hz) and 4.91 (*d*, J = 1.5 Hz). The cross-peak observed in the HMBC plot between the anomeric H-atom signal at δ 4.91 (H–C(1) of Rha-2) and the C-atom signal at δ 76.5 (C(3) of Rha-1) indicated a (1 \rightarrow 3) linkage between the two rhamnose units.

Compound **3** was isolated as a yellow powder with a molecular formula $C_{26}H_{28}O_{15}$, as deduced from the HR-ESI-MS (m/z 581.1490 ($[M + H]^+$)). Comparison of the ¹Hand ¹³C-NMR data of **3** (*Table 1*) with those of 1,7-dihydroxy-2,3-(methylenedioxy)-9*H*-xanthen-9-one [13] suggested that **3** contained as aglycone 1,7-dihydroxy-2,3-(methylenedioxy)-9*H*-xanthen-9-one. By comparison with NMR chemical-shift values and coupling constants, as well as by acid hydrolysis, followed by TLC and GC analyses, one β -D-glucopyranosyl and one α -L-rhamnopyranosyl moiety were identified. Finally **3** was identified as 1-hydroxy-2,3-(methylenedioxy)-7-{[α -L-rhamnopyranosyl-($1 \rightarrow 2$)- β -D-glucopyranosyl]oxy}-9*H*-xanthen-9-one which was named sibiricaxanthone E.

The ¹H-NMR spectrum of **3** exhibited an *ABX* aromatic system at δ 7.65 (d, J = 3.0 Hz), 7.63 (d, J = 9.5 Hz), and 7.49 (dd, J = 3.0, 9.5 Hz), a single H-atom at δ 6.85, a phenolic OH group at δ 12.63, an OCH₂O group at δ 6.18 (s, 2 H)), and two anomeric H-atoms at δ 5.16 (d, J = 7.0 Hz) and 5.12 (br. s). In the HMBC plot, the rhamnose anomeric H-atom (δ 5.12) was correlated with C(2) (δ 76.6) of the

glucosyl residue, and the glucosyl anomeric H-atom (δ 5.16) was correlated with the C(7) (δ 153.4) of the aglycone.

Compound **4** was obtained as a yellow amorphous powder with a molecular formula $C_{29}H_{34}O_{16}$, as deduced from HR-ESI-MS (m/z 639.1910 ($[M + H]^+$)). Comparison of the ¹H- and ¹³C-NMR data of **4** (*Table 2*) with those of **2** suggested that the structure of

Table 2. ¹*H*- and ¹³*C*-*NMR Data* (500 and 125 MHz, resp., (D₆)DMSO) of Compounds 4 and 5. δ in ppm, *J* in Hz.

	4		5		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$	
C(1)		153.8		153.4	
C(2)		130.7		131.7	
C(3)		158.5		157.4	
H-C(4)	6.44(s)	94.0	6.87 (s)	93.9	
C(4a)		152.6		152.3	
H-C(5)	7.31(s)	104.2	7.37(s)	104.1	
C(6)		151.1		151.5	
C(7)		146.9		147.1	
H-C(8)	7.49(s)	105.1	7.54(s)	105.1	
C(8a)		113.6		113.6	
C(9)		179.2		179.6	
C(9a)		102.0		103.6	
C(10a)		151.0		151.3	
MeO-C(2)	3.74(s)	60.0	3.78(s)	60.3	
MeO-C(7)	3.89(s)	56.3	3.94(s)	56.3	
OH-C(1)	12.97(s)		12.88(s)		
Glc:					
H-C(1)			5.13 (d, J = 7.5)	100.1	
H-C(2)			3.37 (overlapped)	73.1	
H-C(3)			3.32-3.33 (<i>m</i>)	76.6	
H-C(4)			3.45 - 3.47 (m)	69.5	
H-C(5)			3.41 - 3.42 (m)	77.2	
$CH_2(6)$			3.75 - 3.77 (m), $3.50 - 3.52$ (m)	60.6	
Rha-1:					
H-C(1)	5.73 (d, J = 1.5)	96.0	5.81 (br. s)	96.0	
H-C(2)	5.19 (dd, J = 1.5, 3.5)	70.9	5.22 (dd, J = 1.5, 3.5)	70.8	
H-C(3)	3.96 (dd, J = 3.5, 9.5)	74.6	4.00 (dd, J = 3.5, 9.5)	74.5	
H-C(4)	3.38 - 3.39(m)	71.2	3.40 - 3.41 (m)	71.2	
H-C(5)	3.61 - 3.63 (m)	70.3	3.62 - 3.64 (m)	70.2	
Me(6)	1.17 (d, J = 6.0)	17.6	1.19 (d, J = 6.0)	17.6	
AcO-C(2)	2.15 (s)	169.7, 20.7	2.12(s)	169.7, 20.7	
Rha-2:	(-)	,	(*)	,	
H-C(1')	4.88 (d, J = 1.5)	102.5	4.91 (br. <i>s</i>)	102.5	
H-C(2')	3.74 - 3.75 (m)	70.3	3.74 - 3.75 (m)	70.3	
H = C(2') H = C(3')	3.38 - 3.39 (m)	70.5	3.39 - 3.40 (m)	70.4	
H = C(4')	3.18 - 3.19 (m)	71.7	3.17 - 3.18 (m)	71.7	
H = C(5')	3.36 - 3.37 (m)	69.1	3.39 - 3.40 (m)	69.1	
Me(6')	1.09 (d, J = 6.0)	17.6	1.12 (d, J = 6.0)	17.7	

4 is closely related to that of **2**, except for the presence of an Ac group in **4**. All the Hand C-atoms of **4** were unambiguously assigned by ¹H,¹H-COSY, HSQC, and HMBC experiments. These data led us to conclude that **4** was 1,3-dihydroxy-2,7-dimethoxy-6-{[α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl- α -L-rhamnopyranosyl]oxy}-9*H*-xanthen-9one which was named sibiricaxanthone F.

The ¹H-NMR spectrum of **4** showed three uncoupled aromatic H-atoms at δ 7.49, 7.31, and 6.44, a Hbonded OH group at δ 12.97 (OH–C(1)), two anomeric H-atoms at δ 5.73 (d, J = 1.5 Hz) and 4.88 (d, J = 1.5 Hz), and two MeO groups at δ 3.89 (s) and 3.74 (s). In the HMBC plot, the H-atom at δ 5.19 (H–C(2) of Rha-1) was correlated with the C=O group of Ac at δ 169.7. The ¹H,¹H-COSY correlation between δ 5.19 (H–C(2) of Rha-1) and δ 5.73 (H–C(1) of Rha-1) confirmed the position of the AcO group at C(2) of Rha-1. Moreover, in the HMBC plot, the anomeric H-atom at δ 4.88 (H–C(1) of Rha-2) was correlated with the C-atom at δ 74.6 (C(3) of Rha-1), and the anomeric H-atom at δ 5.73 (H–C(1) of Rha-1) with C(6) of the aglycone at δ 151.1.

Compound **5** was isolated as a yellow powder with the molecular formula $C_{35}H_{44}O_{21}$, as deduced from the HR-ESI-MS ($m/z \ 801.2434 \ ([M+H]^+)$). The ¹H- and ¹³C-NMR data of **5** (*Table 2*) were similar to those of **4**, except for the presence of an additional set of signals assigned to a glucosyl residue. The cross-peak observed in the HMBC plot of **5** between the glucosyl anomeric H-atom ($\delta \ 5.13$) and C(3) of the aglycone ($\delta \ 157.4$) indicated that the additional glycosyl unit was connected to C(3). From the spectral data, the structure of **5** was established as $3-(\beta-D-glucopyranosyl-oxy)-1-hydroxy-2,7-dimethoxy-6-[<math>\alpha$ -L-rhamnopyranosyl-($1 \rightarrow 3$)-2-O-acetyl- α -L-rhamnopyranosyl]oxy]-9H-xanthen-9-one which was named sibiricaxanthone G.

Xanthenone glycosides are familiar constituents in *Polygalaceae* plants [1-7]. However, compounds such as **4** and **5** which have a sugar sequence α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranosyl with an AcO group located at C(2) of the inner rhamnose residue are reported from the *Polygalaceae* family for the first time. Among the known compounds, polygalaxanthone III and sibiricaxanthone B have been found in *Polygala sibirica* before [8], and the others have been previously reported in the genus *Polygala* [1][7][9][10] but are described here firstly in *Polygala sibirica*.

This work was supported by the *Program for Changjiang Scholar and Innovative Team in University* (No. 985-2-063-112), and by the *Program for New Century Excellent Talents in University* (No. 985-2-102-113).

Experimental Part

General. Column chromatography (CC): SiO₂ (100–200 or 200–300 mesh; Qingdao Marine Chem. Co. Ltd.), D101 porous polymer resin (Tianjin Chem. Ind. Co. Ltd.), Sephadex LH-20 (Pharmacia), and octadecyl silica gel (ODS; 25–40 µm; Merck). TLC: HSGF254-precoated SiO₂ plates (Merck). Semiprep. HPLC: Waters-600 instrument; Waters column prep. NovaPak HR C₁₈ (300 × 10 mm i.d., 6 µm), flow rate 2.0 ml/min; Waters 2487 dual λ absorbance detector (detection wavelength at 228 and 310 nm). GC: Agilent 6890N gas chromatograph; HP-5 capillary column (28 m × 0.32 mm i.d.); FID detection, detector temp. 260°; column temp. 180°; carrier gas N₂, flow rate 40 ml/min. Optical rotations: Perkin-Elmer 243B digital polarimeter. UV Spectra: Shimadzu spectrophotometer; λ_{max} (log ε) in nm. IR Spectra (KBr): Nicolet Avatar-360 spectrometer; in cm⁻¹. NMR Spectra: Varian INOVA-500 or Jeol JNM-A300 spectrometers with Me₄Si as internal standard. ESI-TOF-MS: Applied-Biosystems QSTAR mass spectrometer in the positive mode; in m/z. HR-ESI-MS: Apex-II-FT-ICRMS (Bruker Daltonics) spectrometer. *Plant Material.* The roots of *Polygala sibirica* were collected from Shanxi Province, P. R. China, in July 2006, and identified by one of the authors, Professor *Peng-Fei Tu.* A voucher specimen (A20060715) is deposited in the herbarium of the Modern Research Center for Traditional Chinese Medicine, Peking University Health Science Center, Beijing, China.

Extraction and Isolation. The air-dried roots of Polygala sibirica (9.0 kg) were extracted under reflux three times with 95% EtOH (2×701) for 3 h each time. The extract was combined and concentrated to yield 2.2 kg of residue, a portion (2.0 kg) of which was suspended in H₂O (41) and defatted with petroleum ether (81). The aq. layer was further extracted successively with CHCl₃ (121) and BuOH (121) to obtain the CHCl₃ extract (135 g) and BuOH extract (545 g). A portion of the BuOH extract (500 g) was subjected to CC (HPD-100 resin, washed successively with H₂O and 25, 50, and 70% aq. EtOH). The 25% aq. EtOH eluate (87 g) was subjected to CC (SiO₂ (100-200 mesh; 1.8 kg), CHCl₃/ MeOH $10:1 \rightarrow 1:1$) Fr. A – H. Fr. D (2.8 g) was subjected to CC (SiO₂ (200–300 mesh; 45 g), CHCl₃/ MeOH/H₂O 7:1:0.1), then purified by semiprep. HPLC (MeCN/H₂O 20:80): polygalaxanthone VI $(11 \text{ mg}; t_{\rm R} 15 \text{ min})$. Fr. G (9.8 g) was subjected to CC (SiO₂ (200–300 mesh; 100 g), CHCl₃/MeOH/H₂O 7:1:0.1 \rightarrow 7:3:0.3): Fr. G.1-G.5. Fr. G.4 was purified by CC (Sephadex LH-20, MeOH): 4- β -Dglucopyranosyl-1,3,6-trihydroxy-7-methoxy-9H-xanthen-9-one (14 mg). Fr. H (12 g) was subjected to CC (SiO₂, CHCl₃/MeOH/H₂O $8:2:0.2 \rightarrow 7:3:0.3$): Fr. H.1-H.8. Fr. H.8 was concentrated and kept standing overnight at r.t. After filtration, the resulting precipitate was washed with MeOH: polygalaxanthone III (23 mg). Fr. H.7 was applied to CC (Sephadex LH-20, MeOH) and then purified by semiprep. HPLC (MeOH/H₂O 30:70): magniferin (8 mg; t_R 34.1 min), sibiricaxanthone B (10 mg; t_R 38.6 min), and 7-O-methylmagniferin (5 mg; t_{R} 48.4 min).

The 50% aq. EtOH eluate (300 g) was subjected to CC $(\text{SiO}_2 (100-200 \text{ mesh}; 3.6 \text{ kg}), \text{CHCl}_3/\text{MeOH/H}_2\text{O} 10:1:0 \rightarrow 60:40:5)$: *Fr.* A - M. *Fr.* D (5 g) was subjected to CC (*Sephadex LH-20*, MeOH) and then purified by semiprep. HPLC (MeOH/H}_2O 48:52 containing 0.05% CF _3COOH; flow rate of 2 ml/min); **1** (46 mg; t_R 30.1 min). *Fr.* F (16 g) was subjected to reversed-phase CC (*ODS*, H}_2O/MeOH 20:80 \rightarrow 0:100). Then *Fr. F.16* was concentrated and kept standing overnight at r.t. After filtration, the resulting precipitate was washed with MeOH: **4** (26 mg). *Fr.* G (10 g) was subjected to reversed-phase CC (*ODS*, H}_2O/MeOH 10:90 \rightarrow 0:100). Then *Fr. G.11* was purified by CC (*Sephadex LH-20*, MeOH): **2** (15 mg). *Fr. I* (8 g) was subjected to reversed-phase CC (*ODS*, H}_2O/MeOH 10:90 \rightarrow 0:100) and then purified by CC (*Sephadex LH-20*, MeOH): **5** (10 mg) and **3** (17 mg), resp.

Sibiricaxanthone C (=6-[(6-Deoxy- α -L-mannopyranosyl)oxy]-1,3-dihydroxy-2,7-dimethoxy-9Hxanthen-9-one; 1): Pale yellow powder. [a]_D² = -84.0 (c = 0.175, MeOH). UV (MeOH): 235 (2.77), 243 (2.78), 260 (2.80), 320 (2.61), 362 (2.31). IR (KBr): 3419 (OH), 1651 (C=O), 1614, 1589, 1485. ¹Hand ¹³C-NMR: *Table 1*. ESI-TOF-MS (pos.): 473.30 ([M + Na]⁺), 451.30 ([M + H]⁺). HR-ESI-MS (pos.): 451.1239 ([M + H]⁺, $C_{21}H_{23}O_{11}^{+}$; calc. 451.1235).

Sibiricaxanthone D (=6-{[6-Deoxy-3-O-(6-deoxy-a-L-mannopyranosyl)-a-L-mannopyranosyl]oxy}-1,3-dihydroxy-2,7-dimethoxy-9H-xanthen-9-one; **2**): Yellow powder. [a]_D²⁰ = -70.9 (c = 0.185, MeOH). UV (MeOH): 243 (2.71), 260 (2.74), 320 (2.56), 364 (2.24). IR (KBr): 3419 (OH), 1653 (C=O), 1613, 1587, 1485. ¹H- and ¹³C-NMR: *Table 1*. ESI-TOF-MS (pos.): 619.35 ([M + Na]⁺), 597.36 ([M + H]⁺). HR-ESI-MS (pos.): 597.1801 ([M + H]⁺, C₂₇H₃₃O⁺₁₅; calc. 597.1814).

Sibiricaxanthone $E = 7-\{[2-O-(6-Deoxy-\alpha-L-mannopyranosyl)-\beta-D-glucopyranosyl]oxy\}-1-hy$ $droxy-2,3-(methylenedioxy)-9H-xanthen-9-one = 8-{[2-O-(6-Deoxy-\alpha-L-mannopyranosyl)-\beta-D-glucopy$ ranosyl]oxy]-11-hydroxy-10H-1,3-dioxolo[4,5-b]xanthen-10-one;**3** $): Yellow powder. <math>[a]_{D}^{20} = +63.5 (c = 0.160, MeOH). UV (MeOH): 225 (2.63), 250 (2.63), 288 (2.30), 316 (2.31). IR (KBr): 3418 (OH), 1680 (C=O), 1618, 1581, 1484. ¹H- and ¹³C-NMR:$ *Table 1* $. ESI-TOF-MS (pos.): 603.12 (<math>[M + Na]^+$), 581.13 ($[M + H]^+$). HR-ESI-MS (pos.): 581.1490 ($[M + H]^+$, $C_{26}H_{29}O_{15}^+$; calc. 581.1501).

Sibiricaxanthone F = 6-[/2-O-Acety]-6-deoxy-3-O-(6-deoxy-a-L-mannopyranosyl)-a-L-mannopyranosyl]-a,2-L-mannopyranosyl]-a,2-dimethoxy-9H-xanthen-9-one;**4** $): Yellow powder. <math>[a]_{20}^{20} = -104.8 (c = 0.185, MeOH). UV (MeOH): 234 (2.76), 243 (2.76), 260 (2.78), 320 (2.59), 364 (2.25). IR (KBr): 3422 (OH), 1651 (C=O), 1614, 1578, 1477. ¹H- and ¹³C-NMR:$ *Table 2* $. ESI-TOF-MS (pos.): 661.36 (<math>[M + Na]^+$), 639.37 ($[M + H]^+$). HR-ESI-MS (pos.): 639.1910 ($[M + H]^+$, C₂₉H₃₅O₁₆; calc. 639.1920).

Sibiricaxanthone $G = 6-[2-O-Acetyl-6-deoxy-3-O-(6-deoxy-\alpha-L-mannopy-ranosyl)-\alpha-L-mannopy-ranosyl]-a-L-mannopy-ranosyl]-a-(\beta-D-glucopyranosyloxy)-1-hydroxy-2,7-dimethoxy-9H-xanthen-9-one;$ **5**): Yellow pow-

der. $[a]_{D}^{20} = -70.9 \ (c = 0.175, MeOH)$. UV (MeOH): 243 (2.73), 260 (2.74), 297 (2.34), 316 (2.37). IR (KBr): 3445 (OH), 1653 (C=O), 1613, 1477. ¹H- and ¹³C-NMR: *Table 2*. ESI-TOF-MS (pos.): 823.51 ($[M + Na]^+$), 801.52 ($[M + H]^+$). HR-ESI-MS (pos.): 801.2434 ($[M + H]^+$, $C_{35}H_{45}O_{21}^+$; calc. 801.2448).

Acid Hydrolysis and Analysis of Sugars. Each of the compounds 1-5 (3 mg) was heated in 2N aq. CF₃COOH (5 ml) at 110° for 6 h in a sealed tube. Then, the mixture was diluted in H₂O (15 ml) and extracted with CH₂Cl₂ (3 × 5 ml). The aq. layer was repeatedly concentrated with MeOH until neutral. The sugars were identified by co-TLC (BuOH/AcOH/H₂O 4:2:1, detection by spraying with 95% EtOH/H₂SO₄ 9:1 (ν/ν) with authentic samples: R_f of glucose 0.53 and R_f of rhamnose 0.66).

The sugar components present in the aq. layer after hydrolysis of each of 1-5 were analyzed by GC. The aq. layer was evaporated and the residue dissolved in anh. pyridine (100 µl). Then 0.1M L-cysteine methyl ester hydrochloride (200 µl; *Sigma*) was added, and the mixture was warmed at 60° for 1 h. The trimethysilylation reagent HMDS-TMCS (hexamethyldisilazane/trimethylchlorosilane/pyridine 2:1:10; *Acros Organics*, Belgium) was added, and the mixture was warmed at 60° for 30 min. The supernatant was subjected to GC for sugar identification: D-glucose (t_R 12.73 min) and L-rhamnose (t_R 5.62 min).

REFERENCES

- [1] Y. Jiang, P.-F. Tu, Phytochemistry 2002, 60, 813.
- [2] Y. Jiang, P.-F. Tu, Chem. Pharm. Bull. 2005, 53, 1164.
- [3] J. Li, Y. Jiang, P.-F. Tu, J. Nat. Prod. 2005, 68, 739.
- [4] Y. Jiang, W. Zhang, P.-F. Tu, X.-J. Xu, J. Nat. Prod. 2005, 68, 875.
- [5] J. Li, Y. Jiang, P.-F. Tu, J. Nat. Prod. 2005, 68, 1802.
- [6] H.-T. Chang, P.-F. Tu, Helv. Chim. Acta 2007, 90, 944.
- [7] Y. Jiang, P.-F. Tu, Chin. Tradit. Herb. Drugs 2002, 22, 875.
- [8] T. Miyase, H. Noguchi, X.-M. Chen, J. Nat. Prod. 1999, 62, 993.
- [9] S. Wada, Y. Shimizu, N. Tanaka, R.-C. Cambie, J.-E. Braggins, Chem. Pharm. Bull. 1995, 43, 461.
- [10] H. Wang, Y.-X. Tong. China J. Chin. Mat. Med. 2003, 28, 828.
- [11] R. Kasai, M. Okihara, J. Asakawa, K. Mizutani, O. Tanaka, Tetrahedron 1979, 35, 1427.
- [12] S. Kobayashi, T. Miyase, H. Noguchi, J. Nat. Prod. 2002, 65, 319.
- [13] T.-R. Pinheiro, V.-C. Filho, R.-A. Yunes, Phytochemistry 2002, 60, 813.

Received December 12, 2007